4. Control or Exploit the Competitive Corporate Environment

A highly competitive environment is generally the culture in system planning and development at many companies. Improving the employee’s advancement, real or imagined, takes precedence over the selecting the best route to achieving the immediate goal.

It is rare, but I saw one corporation where the corporate culture apparently was one of cooperation. This had emerged from the company’s founding with the corporate goal of improving medical care by improving medical devices. This was a goal in which folks took pride.

In addition, exploiting internal or external competition or a combination of both, outstanding systems can be developed. There are different scenarios for this.

Minimize competitive juices for a common good. In planning for development of a new quality control system for a critical medical device, one corporation formed a group consisting of highly qualified internal and external experts in all involved areas. In other companies, such discussions consisted primarily of attacks citing the weaknesses of the proposed suggestion.

The objectives were described and folks suggested different approaches followed by discussion. The participants suggested non-obvious means to improve the suggested systems using their technological expertise.

The company ethos was to do good by providing solutions that improved medical treatment. Everyone seemed to be proud of this and would spend extra effort and time in areas with which I had contact. This was true for development of quality inspection and control systems.

All suggestions were respectfully considered, and the combined expertise was used to improve all suggestions. This not only improved suggestions, but also encouraged folks to make suggestions that they felt might lead somewhere.

Use the cooperative team ethos where possible. Modify an overly competitive culture for productive ends.

Maximize competitive juices for a common good. Problems at a silicon integrated circuits manufacturing plant halted production. To address this, two different laboratories, at corporate RD, were assigned the task of solving this problem, with the spoils to the winner. This fired the competitive juices of the engineers in both groups and the problem was solved in a short time. Here, exploiting the competitive approach provided successful rapid results.

Combine cooperation with competitive juices to defeat an internal threat. Easily the most outstanding example where internal cooperation and expertise, in response to an internal threat, led to the invention of the charge coupled device (CCD). The inventors Boyle and Smith won the Nobel Prize. Boyle and Smith were the lab director and department head of silicon/semiconductor development at Bell Labs. They were outstanding technologists and managers.

The threat arose from magnetic bubbles. A single, small magnetic domain, with polarization up or down to represent zero or one, could be moved in a material from one location to another. This permitted digital information to be transferred from one location in a material to another location and to be stored and sensed for polarity. This threatened semiconductor/silicon dominance in digital storage and communications. The threat, it is ironic to note, came from a competing group working on magnetic bubbles within the corporation.

Boyle and Smith met to size up the threat. They invented a means to move electrons from one location to another in silicon, using shaped and movable electric-potential wells that had the same features as the magnetic bubbles but were faster and in much-better developed material that had massive research and development done for silicon transistors. Silicon won: it was no contest.

The different practices discussed for obtaining faster, better development of sensing systems make use of available resources and different management environments. The successful examples discussed illustrate how to exploit or establish resources and how to exploit or modify existing attitudes/procedures to improve the work product. Q